UNIVERSIDADE FEDERAL DO OESTE DO PARÁ CURSO DE ENGENHARIA FLORESTAL ESTATÍSTICA EXPERIMENTAL

Lista Exercício 1 – TESTE T

- 1) Explique o uso do teste t independente e teste t pareado e cite um exemplo de cada.
- 2) Um produtor rural deseja saber se existe diferença na produção de polpa de *Anarcadium occidentale* (Cajueiro) entre indivíduos de duas áreas (A e B) do Planalto Santareno. Os dados obtidos foram os seguintes:

Obs. №	1	2	3	4	5	6	7	8	Média (\overline{x})	Variância (s²)
Área A	52,1	51,7	42,3	60,5	43,2	47,8	59,2	51,8		
Área B	42,7	60,1	58,4	54,2	54,7	62,3	55,6	47,2		

Pede-se:

- a) Qual tipo de teste t deve ser aplicado (dependente ou independente)?
- b) Escreva as hipóteses estatísticas (H₀ e H₁), conforme teste t definido na letra a.
- c) Faça os cálculos para o teste de Student (teste t) encontrando valores de variância ponderada Sp = 46,96 e t calculado $t_{calc} = 1,013$.
- d) Indique se a hipótese nula (H0) foi aceita ou rejeitada, e por quê. Para isso busque o valor t tabelado à 5%.
- e) Faça uma conclusão se existe diferenças no peso médio das polpas entre as áreas (Conclusão com base no resultado estatístico de H_0 e H_1).
- 3) Um fisiologista deseja avaliar se existe diferença no potencial hídrico (medido em bar) de uma determinada espécie florestal no horário de 12:00 e às 15:00. Foram feitas as medições em 7 árvores nos horários estabelecidos e os dados seguem abaixo:

Às 12:00	Às 15:00	Diferenças					
3,17	2,02						
3,86	2,09						
2,75	2,09						
4,82	3,08						
3,14	3,02						
3,65	3,07						
2,09	1,95						
Média das diferenças (\overline{x}_d)							
Variância das diferenças (s _p ²)							

Pede-se:

- a) Qual tipo de teste t deve ser aplicado (dependente ou independente)?
- b) Escreva as hipóteses estatísticas (H₀ e H₁), conforme teste t definido na letra a.
- c) Faça os cálculos para o teste de Student (teste t) encontrando valores de variância das diferenças Sd = 0,478 e t calculado $t_{calc} = -3,3674$ (desconsiderar o valor negativo módulo).
- d) Indique se a hipótese nula (H0) foi aceita ou rejeitada, e por quê. Para isso busque o valor t tabelado à 5%.
- e) Faça uma conclusão se há diferença de potencial hídrico entre os horários analisados (Conclusão com base no resultado estatístico de H_0 e H_1).